
How to handle
asynchronous actions in Redux

React Poznań Meetup by meet.js #3,
7th June 2018

Jacek Tomaszewski
Fullstack Web Developer at Recruitee.com

Freelancer and Consultant at jtom.me

https://jobs.recruitee.com
https://jtom.me

● One-way data flow

● Everything is pure and simple:

○ Actions and State are just

immutable data objects

○ Reducer is a pure function,

that has no side effects and

produces a new state immediately

Redux is a beautiful concept

Redux is a beautiful concept

● It lets us grasp all UI events and other side effects into a controllable, testable data form

○ All of them produce and dispatch a Redux action payload,

so they are no longer side-effects per se

● An app with multiple actions being done at the same time is no longer a problem

○ Redux applies all the actions consecutively thanks to the reducer function

Not all of the actions can be handled immediately.

● Some of them will take time.

They are asynchronous.

● Some of them need to be aborted when another action appears in the meantime.

They are dependant on each other.

… but the world is not synchronous

> “It is up to you to try a few options, choose a convention you like, and follow it, whether with, or without

the middleware.”

Redux official documentation

Redux leaves us to solve it on our own

https://redux.js.org/advanced/async-actions

An action creator that returns a function which
will dispatch multiple actions over time

● redux-thunk

● redux-promise

A “4th” element in the Redux store, that listens
to the actions, acts on them, and dispatches
another actions in the background as a result

● using JS generators syntax and custom APIs

○ redux-saga

○ redux-ship

● using Observables
○ redux-effects

○ redux-cycles

Current approaches to the problem

Solution no 1: Allow action creators to dispatch
multiple actions over time

1. An instiantated action A0 emits a side effect
(f.e. a fetch action that starts an API request)

2. After some time another side effect arrives
(f.e. the API request had been finished)

3. The function that created the action A0, picks
up the side effect, and creates an action A1
(f.e. a fetch success action)

Allow action
creators to
dispatch multiple
actions over time:
redux-thunk

function fetchUser() {

 return dispatch => {

 dispatch({ type: FETCH_USER_START });

 UserService.getCurrentUser().then(

 user => {

 dispatch({ type:

FETCH_USER_SUCCESS, user });

 },

 error => {

 dispatch({ type:

FETCH_USER_FAILURE, error });

 }

)

 }

}

- The action creators, that were supposed to

be simple, quickly get over bloated with

business logic code

- It’s still impossible (or at least veery hacky)

to do stuff like debouncing the action or

cancelling an ongoing one

Pros & cons of redux-thunk-like solution

+ Doesn’t differ much from normal

synchronous action creators

+ Easy and quick to write, barely any API that

you need to learn

+ Is good enough in most simple cases

Solution no 2a: Use JS generators to listen to
actions, act on them and create another ones

1. State machine listens to an action A0 and
switches to a state A1, and then to A2;

2. State machine waits for an action A3 to come;

3. State machine dispatches a new action into
the Redux reducer function.

Use JS generators
to listen to actions,
act on them and
create another
ones:
redux-saga

import { call, put, takeLatest } from

"redux-saga/effects";

function* fetchUser(action) {

 yield put({ type: FETCH_USER_START });

 try {

 const user = yield

call(UserService.getCurrentUser);

 yield put({ type: FETCH_USER_SUCCESS,

user: user });

 } catch (error) {

 yield put({ type: FETCH_USER_FAILURE,

message: error });

 }

}

function* fetchUserSaga() {

 yield takeLatest(FETCH_USER,

fetchUser);

}

- You need to learn JS generators syntax

- You need to learn the custom library’s API,

which isn’t used anywhere else (~around

10-40 functions that allow you to instruct

the State machine about how and for what

actions should it wait)

- Very difficult to make it work with

TypeScript

- // Personally, I never liked the syntax too

much (too imperative)

+ Acting on actions, initiating side effects and

build actions from them is extracted to

Sagas

+ You can wait for another action, cancel

ongoing action, debounce, throttle, etc.

+ Is easily testable (you can just directly test a

given saga, by putting in actions and

expecting another ones)

+ Quite easy to learn (~1-2 days)

Pros & cons of redux-saga-like solution

Solution no 2b: Use Observables to store,
control and produce actions

1. Observable picks up an action A0

2. Observable waits a few seconds

3. Observable switches to do some other stuff
(like an API request) and waits for the result

4. Observable waits for another action A1 to
come

5. Observable finally results with another
action, which is dispatched to the reducer

const fetchUserEpic = action$ => {

 return action$

 .ofType(FETCH_USER)

 .switchMap(action => {

 return Observable.concat(

 Observable.of({ type:

FETCH_USER_START }),

 Observable.fromPromise(

UserService.getCurrentUser().then(

 user => ({ type:

FETCH_USER_SUCCESS, user }),

 error => ({ type:

FETCH_USER_FAILURE, error })

)

)

);

 });

}

Use Observables to
store, control and
produce actions:
redux-effects

Use Observables to
store, control and
produce actions:
redux-effects

const refetchResultsEpic = action$ => {

 return Observable.merge(

 action$.ofType(CHANGE_QUERY)

 .debounceTime(500),

 action$.ofType(CHANGE_FILTERS)

 .debounceTime(300),

 action$.ofType(CHANGE_PAGE),

 action$.ofType(CHANGE_SORT_BY),

)

 .mapTo({ type: FETCH_RESULTS });

}

const validateOnSubmitEpic = (action$,

store) =>

 action$.ofType(SUBMIT).switchMap(() =>

{

 const validate$ = Observable.of({

type: VALIDATE });

 const onValidate$ = Observable.merge(

 action$.ofType({ type:

VALIDATE_SUCCESS }),

 action$.ofType({ type:

VALIDATE_FAILURE })

)

 .first()

 .filter(action => action.type ===

VALIDATE_SUCCESS)

 .mapTo({ type: SUBMIT_START });

 return Observable.merge(validate$,

onValidate$);

 });

Use Observables to
store, control and
produce actions:
redux-effects

- You need to learn Observables
- Imagine learning and using Promise for the first

time - this is how Observables will be for you in
the beginning

- Because of that, it might take you a few days
until you get fluent in them
P.S. Rx Marbles help a lot

- You might end up having too much business

logic in your epics
- I suggest extracting it into separate services

- You might end up with controlling the state

in effects instead of reducers
- Avoid it, epics should be simple and

declarative

Pros & cons of redux-observable-like solution

+ Acting on actions, initiating side effects and

build actions from them is extracted to

Epics

+ You can wait for another action, cancel

ongoing action, debounce, throttle, etc.

+ Is easily testable
+ you can directly test an epic, by putting in

actions and expecting another ones)

+ Supports TypeScript well

+ After you learn Observables, you can use

them in other use cases as well (and 18

other programming languages)

In short

1. Redux is an awesome concept, but:
a. it gives no solution to act on asynchronous actions

2. Redux-thunk is enough in a short term, but:
a. you’ll need to switch to something else eventually

3. A choice between redux-saga and redux-effects (and their other equivalents) is mostly based on

your personal taste and previous experience, but:
a. I suggest going with the Observables way, as:

i. it is a perfect way to grasp a series of events in a time;
ii. they are getting more and popular nowadays

iii. (promoted in Angular since years, and now going into the official ES spec as well)

Related links

● “The world is asynchronous”, Werner Vogels, All Things Distributed (15th July 2004)

● “Redux-Saga V.S. Redux-Observable”

● Demo app:
○ redux-thunk: https://stackblitz.com/edit/redux-observable-slide-thunk-demo
○ redux-effects: https://stackblitz.com/edit/redux-observable-slide-demo

https://www.allthingsdistributed.com/historical/archives/000486.html
https://hackmd.io/s/H1xLHUQ8e
https://stackblitz.com/edit/redux-observable-slide-thunk-demo
https://stackblitz.com/edit/redux-observable-slide-demo

Thanks!
Any questions?

Jacek Tomaszewski
Fullstack Web Developer at Recruitee.com (We’re hiring!)

Freelancer and Consultant at jtom.me

https://jobs.recruitee.com
https://jtom.me

